Internal Universes in Models of Homotopy Type Theory

نویسندگان

  • Daniel R. Licata
  • Ian Orton
  • Andrew M. Pitts
  • Bas Spitters
چکیده

We show that universes of fibrations in various models of homotopy type theory have an essentially global character: they cannot be described in the internal language of the presheaf topos from which the model is constructed. We get around this problem by extending the internal language with a modal operator for expressing properties of global elements. In this setting we show how to construct a universe that classifies the Cohen-Coquand-Huber-Mörtberg (CCHM) notion of fibration from their cubical sets model, starting from the assumption that the interval is tiny—a property that the interval in cubical sets does indeed have. This leads to a completely internal development of models of homotopy type theory within what we call crisp type theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Game-theoretic Interpretation of Type Theory Part I: Intuitionistic Type Theory with Universes

We present a game semantics for intuitionistic type theory. Specifically, we propose a new variant of games that provides a uniform treatment of games and strategies, and enables us to interpret the hierarchy of universes without a Russell-like paradox. We then formulate categories with families of the games for both extensional and intensional variants of the type theory, which support ∏ -, ∑ ...

متن کامل

On the complexities of polymorphic stream equation systems, isomorphism of finitary inductive types, and higher homotopies in univalent universes

This thesis is composed of three separate parts. The first part deals with definability and productivity issues of equational systems defining polymorphic stream functions. The main result consists of showing such systems composed of only unary stream functions complete with respect to specifying computable unary polymorphic stream functions. The second part deals with syntactic and semantic no...

متن کامل

Two-Level Type Theory and Applications

We define and develop two-level type theory, a version of MartinLöf type theory which is able to combine two type theories. In our case of interest, the first of these two theories is homotopy type theory (HoTT) which may include univalent universes and higher inductive types. The second is a traditional form of type theory validating uniqueness of identity proofs (UIP) and may be understood as...

متن کامل

Denotational semantics for guarded dependent type theory

We present a new model of Guarded Dependent Type Theory (GDTT), a type theory with guarded recursion and multiple clocks in which one can program with, and reason about coinductive types. Productivity of recursively defined coinductive programs and proofs is encoded in types using guarded recursion, and can therefore be checked modularly, unlike the syntactic checks implemented in modern proof ...

متن کامل

Multi-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes

This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.07664  شماره 

صفحات  -

تاریخ انتشار 2018